0=-16t^2+96t+128

Simple and best practice solution for 0=-16t^2+96t+128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+96t+128 equation:



0=-16t^2+96t+128
We move all terms to the left:
0-(-16t^2+96t+128)=0
We add all the numbers together, and all the variables
-(-16t^2+96t+128)=0
We get rid of parentheses
16t^2-96t-128=0
a = 16; b = -96; c = -128;
Δ = b2-4ac
Δ = -962-4·16·(-128)
Δ = 17408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17408}=\sqrt{1024*17}=\sqrt{1024}*\sqrt{17}=32\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-32\sqrt{17}}{2*16}=\frac{96-32\sqrt{17}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+32\sqrt{17}}{2*16}=\frac{96+32\sqrt{17}}{32} $

See similar equations:

| 4(m+2)=4(m–2) | | 11^6x=12^x-3 | | (x+5)/2=2(x+3) | | t=-16t^2+96t+128 | | 0.17x+0.3(x-5)=0.01(2x-4) | | 8x^2-2x=(2x+1)(2x-3) | | 8x62-2x=(2x+1)(2x-3) | | (6x)^2=0 | | (2x-11)+(3x+6)=180 | | 3/4x^2=(5/4)x+1/2 | | 3^(2x)=23 | | 39-19=4(x-3) | | 11x-2x+8x+5=32 | | 5+10x3=35 | | 5*x÷4-8=12 | | 8+d/6=14 | | Y=3x(3.6)+(-11) | | 10.5+a/4=27 | | 2/5=x=1 | | Y=3x+(-11)=-6x+(-13) | | 7.8=2.2+w/4.3 | | 4×+y=33 | | Y=2x(-4)+8 | | 23=x-(-18) | | X+10+2x=100-3x | | t2-4=0 | | 100-4p=10=2p | | 225*1/3=x | | Y=2x+8=-1x+(-8) | | -27=m-9 | | 2x−13=1/2 | | 2x−1/3=1/2 |

Equations solver categories